- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000000000100
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Arvidson, Aaron (2)
-
Belinga, Marc (2)
-
Field, Jacob (2)
-
Jesudason, Nathan (2)
-
Menne, Torrey (2)
-
Prince, Riley (2)
-
Roy, Kai (2)
-
Heiesy, Dylan (1)
-
Heisey, Dylan (1)
-
Selker, John (1)
-
Tilford, Li (1)
-
Udell, Chet (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 30, 2025
-
Prince, Riley; Belinga, Marc; Field, Jacob; Roy, Kai; Heisey, Dylan; Arvidson, Aaron; Menne, Torrey; Tilford, Li; Jesudason, Nathan (, Zenodo)Environmental DNA (eDNA) is an ideal way of researching aquatic environments and determining whatspecies are present in an area the biodiversity of an area, and if any invasive or endangered species arepresent. Traditional sampling of eDNA consists of manually filtering water, which is labor and cost-intensive for remote locations. Furthermore, commercialized solutions are either expensive or require a field operator to function. We have built a battery-powered eDNA sampler capable of autonomous multi-sampling for a greatly reduced price compared to existing technologies. Environmental DNA collection contains 3 main components: environmental DNA must be preserved, the filtered volume must be accurate, and there must be no cross-contamination between samples. The sampler operates in this way separating eDNA via filters, preserving DNA, and recording the filtered volume per sample. Our PolyWAG eDNA sampler system is a water sampling device that collects DNA samples via 47mm filter and provides a non-invasive, safe and autonomous means of eDNA collection. The sampler can hold 24 filters and is designed to be easily replaced and reusable. A browser application is used for real-time monitoring, scheduling tasks, and data logging for time, pressure, flow, and filtered volume. Additionally, the sampler design is openly published, modular and is constantly being tested to help us optimize our software and hardware to give us the best results. The 13-step sampling sequence helps reduce cross contamination significantly. Our machine can be deployed for an extended period. It is completely autonomous and costs around $3800 for components or $6000 including labor.more » « less
An official website of the United States government
